
8 Optimal Detection for Additive Noise Channels:

1-D Case

We now derive the optimal demodulator for the waveform channel. From
the previous chapter, we have seen that instead of analyzing the waveform
channel, we can convert it to an equivalent vector channel. The length of the
vector is the same as the size K of the orthonormal basis for the waveforms
s1(t), s2(t), . . . , sM(t). In this chapter, we will assume K = 1. This is the
case, for example, when we use PAM.

Definition 8.1. Detection Problem: When K = 1, our problem un-
der consideration is simply that of detecting the scalar message S in the
presence of additive noise N . The received signal R is given by

R = S +N.

• S is selected from an alphabet S containing M possible values s(1), s(2),
. . ., s(M).

• pS
(
s(j)
)

= P
[
S = s(j)

]
≡ pj.

• S and N are independent.

A detector’s job is to guess the value of the channel input S from the value
of the received channel output R. We denote this guessed value by Ŝ. An
optimal detector is the one that minimizes the (symbol) error probability

P (E) = P
[
Ŝ 6= S

]
.

8.2. The analysis here is very similar to what we have done in Chapter 3.
Here, for clarity, we note some important differences:

• In Chapter 3, The channel input and output are denoted by X and Y ,
respectively. Here, they are denoted by S and R.

• In Chapter 3, the transition probabilities are arbitrary and summa-
rized by the matrix Q. Here, the transition probabilities is basically
controlled by the additive noise.

• In Chapter 3, both X and Y are discrete. Here, S is discrete. However,
because noise is continuous, R will be a continuous random variable.
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Even with these differences, several techniques that we used in Chapter 3
will be applicable here.

Example 8.3. Review: To re-connect with what we studied in Chapter 3,
let’s try to find the Q matrix when the additive noise is discrete. Suppose

pS (s) =


0.3, s = −1,
0.7, s = 1,
0, otherwise,

and pN (n) =


0.2, n ∈ {−0.5,+0.5},
0.6, n = 0,
0, otherwise.

Because R = S +N , we know that

(a) given S = −1, we have R = −1 +N :

(b) given S = 1, we have R = 1 +N :

The Q matrix is given by

Note that each row of the Q matrix is simple a shifted copy of the noise
pmf. The amount of shift is the corresponding value of s for that row.

8.4. Formula-wise, when the additive noise is discrete, each row of the Q
matrix (as in Example 8.3) is given by

pR|S(r|s) = pN(r − s). (45)
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8.5. When the additive noise is continuous, there are uncountably many
possible values for the channel output R. Hence, representing conditional
probabilities in the form of a matrix Q does not make sense here.

When R is continuous, the conditional pmf pR|S(r|s) is replaced by the
conditional pdf fR|S(r|s). For additive noise N with pdf fN(n), we have

fR|S(r|s) = fN(r − s). (46)

Example 8.6. Suppose the discrete additive noise in Example 8.3 is re-
placed by a continuous additive noise:

Ex. Binary PAM under “Triangular” Noise
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Figure 40: Binary PAM under “Triangular” Noise

8.7. The optimal detector, which minimizes the error probability, is the
MAP detector:

ŝMAP (r) = arg max
s∈S

pS(s)fR|S (r |s) = arg max
s∈S

pS(s)fN (r − s) . (47)

Because event [W = j] is the same as event [S = s(j)], we also have

ŵMAP (r) = arg max
j∈{1,2,...,M}

pjfN

(
r − s(j)

)
. (48)
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When the prior probabilities are ignored, we have the (sub-optimal) ML
detector:

ŝML (r) = arg max
s∈S

fR|S (r |s) = arg max
s∈S

fN (r − s) . (49)

and
ŵML (r) = arg max

j∈{1,2,...,M}
fN

(
r − s(j)

)
. (50)

8.8. Graphically, here are the steps to find the MAP detector:

(a) Plot p1fN(r − s(1)), p2fN(r − s(2)), . . . , pMfN(r − s(M)).

• Note that they are functions of r.

• This is similar to scaling the rows of the Q matrix by the corre-
sponding prior probabilities in Chapter 3 to get the P matrix.

(b) Select the maximum plot for each (observed) r value.

• If there are multiple max values, select any.

• The corresponding s(j) is the value of ŝMAP at r.

Example 8.9. Back to Example 8.6.
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Figure 41: MAPD for Binary PAM under “Triangular” Noise

117



-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

r
1

-0.42 -0.415 -0.41 -0.405 -0.4 -0.395 -0.39 -0.385

0.102

0.103

0.104

0.105

0.106

0.107

0.108

0.109

r

     11 0Np f
x s a

a
  

     22 0Np f
x s a

a
 

x-intercept

x-intercept

slope

slope

           
       

       
   

22

2
2

2
2 2

1

11

1

1
1

1

0

0.7 1 0.3 1 0.4

0 NN p f
x s a

a

p x s

p f
x s a

a

p x a

p s a

s a

p s ap p x

x





  



 

 



  





  







           

       
The difference between 

the two -interce

2 22
2

1

pt

1
1

21 2

10.3 0.7
2

2

0

0

x

N

N

p f
p s a s a

a

p p f
s a

a

ay p s

s a

  

 
 
  
 


 



















  1 1  0.105

 0.4,0.105

Figure 42: Solving for τMAP in MAPD for Binary PAM under “Triangular” Noise

Definition 8.10. The ith decision “region”, denoted by Di for a decoder
ŝ(r) is defined as the collection of all the r values at which r is decoded as
s(i).

• The collection D1, D2, . . . ,DM should partition the whole observable
values (support) of R.

Example 8.11. Back to Example 8.6.
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Figure 43: Decision Regions in MAPD for Binary PAM under “Triangular” Noise

8.12. The error probability of a detector can be found via its success prob-
ability
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P (C) =
M∑
i=1

P
(
C|S = s(i)

)
P
[
S = s(i)

]
=

M∑
i=1

P
[
R ∈ Di

∣∣∣S = s(i)
]
pi

=
M∑
i=1

piP
[
S +N ∈ Di

∣∣∣S = s(i)
]

=
M∑
i=1

piP
[
N + s(i) ∈ Di

]
=

M∑
i=1

pi

∫
Di

fN

(
r − s(i)

)
dr =

M∑
i=1

∫
Di

pifN

(
r − s(i)

)
dr.

This gives

P (E) = 1− P (C)

=
M∑
i=1

pi

∫
Dc
i

fN

(
r − s(i)

)
dr =

M∑
i=1

∫
Dc
i

pifN

(
r − s(i)

)
dr.

Although, at first, the above expressions may look complicated, it is similar
to what we did in Chapter 3: graphically, the area under the max (selected)
plot is P (C).

Example 8.13. Back to Example 8.6.
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Figure 44: Probability of Successful Detection for Binary PAM under “Triangular” Noise
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8.14. Gaussian Noise: When the noise N is Gaussian with mean 0 and
standard deviation σN ,

fN(n) =
1√

2πσN
e
− 1

2

(
n
σN

)2
.

Definition 8.15. In general, a Gaussian (normal) random variable X
with mean m and standard deviation σ is characterized by its probability
density function (PDF):

fX(x) =
1√
2πσ

e−
1
2(

x−m
σ )

2

.

To talk about such X, we usually write X ∼ N (m,σ2). Probability involv-
ing X can be evaluated by

P [X ∈ A] =

∫
A

fX(x)dx.

In particular,

P [X ∈ [a, b]] =

∫ b

a

fX(x)dx = FX(b)− FX(a)

where FX(x) =
∫ x
−∞ fX(t)dt is called the cumulative distribution function

(CDF) of X.
We usually express probability involving Gaussian random variable via

the Q function which is defined by

Q (z) =

∞∫
z

1√
2π
e−

x2

2 dx.

Note that Q(z) is the same as P [S > z] where S ∼ N (0, 1); that is Q (z)
is the probability of the “tail” of N (0, 1).

It can be shown that

• Q is a decreasing function

• Q (0) = 1
2

• Q (−z) = 1−Q (z)
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◦ This is useful for converting the argument of the Q function to
positive value.

• For X ∼ N (m,σ2),

P [X > c] = Q

(
c−m
σ

)
.

8.16. Three important noise probabilities for N ∼ N (0, σ2
N):

P [N > c] = , P [N < c] = , P [a < N < b] =

Note that all strict inequalities above can also be replaced by the ones
that also include equalities because the noise is a continuous random variable
and hence including one particular noise value does not change probability.

Example 8.17. In a binary antipodal signaling scheme, the message S is
randomly selected from the alphabet set S = {−3, 3} with P [S = −3] = 0.3
and P [S = 3] = 0.7. The message is corrupted by an independent additive
noise N ∼ N (0, 2). Find the MAP detector ŝMAP (r).
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For a given r, we select ŝ(r) = s(2) if and only if

p2fN

(
r − s(2)

)
> p1fN

(
r − s(1)

)
p2

1√
2πσ

e
− 1

2

(
r−s(2)
σ

)
> p1

1√
2πσ

e
− 1

2

(
r−s(1)
σ

)

r >
σ2

s(2) − s(1)
ln
p1

p2
+
s(1) + s(2)

2
=
σ2

d
ln
p1

p2
+
s(1) + s(2)

2

1

r

  1

1 Np f r s

  2

2 Np f r s

 1
s

 2
s

 

 

1*

1
1 1

2 *

1
2 2 2

1

2

2

Area

Area ln

ln

2

2

s d p
p Q

s d p
p Q p Q

d

p Q
d p

p

 







 



   
     

 

   
     

  



   

       1 2 1 22 2
* 1 1

2 1

2 2

ln ln
2 2

p s s p s s

p d ps s

 


 
   



   

   

2 1

2 1

0 / 2

d s s

s t s t

N

 

 



P (E) = p1Q

(
τ ∗ − s(1)

σ

)
+ p2Q

(
s(2) − τ ∗

σ

)
= p1Q

(
d

2σ
+
σ

d
ln
p1

p2

)
+ p2Q

(
d

2σ
− σ

d
ln
p1

p2

)
We can see from the last expression that the error probability of the

optimal (MAP) detector depends on s(1) and s(2) only through their distance
d.
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8.18. For M -ary PAM under additive noise channel where R = S + N ,
S |= N , and N ∼ N (0, σ2

N)

ŝMAP (r) = arg max
s∈S

(pS(s)fN (r − s)) (51)

= arg max
s∈S

(
pS(s)

1√
2πσN

e
− 1

2

(
r−s
σN

)2)
(52)

= arg max
s∈S

(
2σ2

N ln pS(s)− (r − s)2
)

(53)

= arg max
s∈S

(
σ2
N ln pS(s)− Es

2
+ s · r

)
, (54)

and from (53), when we set all pS(s) to be the same (or ignore the pS(s) in
our calculation)

ŝML (r) = arg min
s∈S

(r − s)2 = arg min
s∈S

d (r, s) .

Definition 8.19. In “standard” multi-level PAM, we required that the
spacing between all adjacent signals to be the same. Furthermore, all M
signals are equally likely. To minimize the average energy, we also require
that the constellation is “centered” around zero.

1

Suppose the distance between adjacent signals is d, then the M signals
are represented in the constellation by

s(j) =
d

2
(2j − 1−M) .
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Example 8.20. Probability of Detection Error for Standard Quaternary
PAM

1

s(1) s(2)            s(3)             s(4)0

If we define q = Q
(
d

2σ

)
, then

P (C) =
1

4
(1− q) +

1

4
(1− 2q) +

1

4
(1− 2q) +

1

4
(1− q) = 1− 6

4
q = 1− 3

2
q.

Therefore, the detection error probability is

P (E) = 1− P (C) =
3

2
q =

3

2
Q

(
d

2σ

)
. (55)

For easier comparison with other modulation schemes, we express P (E)
in terms of SNR = Eb

σ2 . To find the average energy per bit Eb, we first find
the average energy per symbol:

Es =
M∑
j=1

pjEj =
1

4

((
−3d

2

)2

+

(
−d

2

)2

+

(
d

2

)2

+

(
3d

2

)2
)

=
5

4
d2.

Scaling Es by log2M , which is the number of bits per symbol, we get the
average energy per bit:

Eb =
Es

log2M
=

Es

log2M
=

5
4d

2

log24
=

5

8
d2.
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Hence, we can replace the distance d in (55) by

d =

√
8

5
Eb = 2

√
2

5
Eb

which gives

P (E) =
3

2
Q

2
√

2
5Eb

2σ

 =
3

2
Q

(√
2

5

Eb

σ2

)
. (56)

Suppose the noise process in the waveform channel is AWGN with PSD N0

2 .
Then, σ2 = N0

2 and

P (E) =
3

2
Q

(√
4

5

Eb

N0

)
. (57)

8.21. At this point, we know that we are able to find the optimal detector
(the MAP detector) and the corresponding detection error probability by
first converting the waveform channel into the vector channel. Note that to
do this, we will first need to find the orthonormal basis functions (possibly
by GSOP) can projects all the signals into the signal space. However, it
turns out that we don’t have to do any of these at all. Once we have gone
through all the derivation of the optimal detector and the corresponding
detection error probability and got answers in the vector channel, we can
convert our answers back to the waveform calculations. This is what we will
do next.

8.22. Correlation detector: Recall, from (54), that for additive noise
channel where R = S +N , S |= N , and N ∼ N (0, σ2

N),

ŝMAP (r) = arg max
s∈S

(
σ2
N ln pS(s)− Es

2
+ r · s

)
. (58)

Now,

r · s(j) = 〈r (t) , sj (t)〉 =

∞∫
−∞

r (t) sj (t)dt.

Therefore, the calculation involved in finding the optimal detector can be
performed directly on the original waveform functions of the signals.
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This mathematical equivalence means the optimal detector can be im-
plemented with correlators as shown in Figure 46. Note that

ηj = σ2
N ln pj −

Ej

2
.
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Figure 46:
Correlation
detector.

8.23. Matched filter implementation of the optimal detector: In
practice, to calculate the correlation (inner-product) 〈r (t) , s (t)〉 above, we
use filtering. Such filter is called the matched filter.

Recall that when a signal r(t) passes through a filter whose impulse
response is h(t), the output of the filter is given by

{r ∗ h} (t) =

∞∫
−∞

r (τ)h (t− τ) dτ

Let’s try h(t) = s(T − t) for some constant T . This filter is called the
matched filter. Note that

h(t− τ) = s (T − (t− τ)) = s (T − t+ τ) .

Therefore,

{r ∗ h} (t) =

∞∫
−∞

r (τ)s (T − t+ τ) dτ.
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In particular,

{r ∗ h} (T ) =

∞∫
−∞

r (τ)s (τ) dτ = 〈r (t) , s (t)〉 .
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Figure 47: Two equivalent imple-
mentations of the inner-product
between the received signal and
the signal waveform: (a) via cor-
relator and (b) via matched filter.

So, now we have an alternative way to calculate the inner-product term in
58. This new calculation via matched filter is shown in Figure 47b where it is
also compared with the correlator implementation. When all the correlators
in Figure 46 are replaced by the corresponding matched filters, we obtain
Figure 48 which is an implementation of the optimal (MAP) detector via
matched filters.
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Matched filter
implementation
of the optimal
detector
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8.24. Capacity of the AWGN channel:
Back when we finished the study of optimal decoder for the discrete

communication channel in Chapter 3, we then proceeded to find the limit
of the communication rate via the concept of channel capacity in Chapter
4.

For the waveform channel under additive white Gaussian noise (AWGN)
introduced in Chapter 7, similar information-theoretic quantities and anal-
ysis can be defined and performed to find the channel capacity. Its meaning
is still the same, being the maximum rate that information can be reliably
sent over the channel. Additionally, we will assume that the mean square
value of the channel input can not exceed P . It turns out that, for the
AWGN channel with power constraint P and the mean square value of the
noise is σ2

N , the channel capacity is

C =
1

2
log2

(
1 +

P

σ2
N

)
.

For a band-limited AWGN channel for which signals are bandlimited
to B [Hz]. If the power spectral density of the noise is N0

2 as discussed in
Chapter 7, then

σ2
N = E

[
N 2(t)

]
= RN(0) =

∫ ∞
−∞

SN(f)df =

∫ B

−B

N0

2
df =

N0

2
× 2B = N0B.

Recall that, from the sampling theorem, a maximum of 2B independent
samples of information per second can be transmitted, errorfree, over such
channel. Therefore, the corresponding channel capacity is

C = 2B × 1

2
log2

(
1 +

P

N0W

)
= B log2

(
1 +

P

N0W

)
bits per second.

Remarks:

(a) Capacity can be made infinite by increasing the signal power P to
infinity.

(b) Suppose we increase the bandwidth. In the limit as B → ∞, the
channel capacity approaches a limit of (log2 e)

P
N0

.
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